Unsupervised Learning and Clustering Using a Random Field Approach
نویسندگان
چکیده
In this work we propose a random field approach to unsupervised machine learning, classifier training and pattern classification. The proposed method treats each sample as a random field and attempts to assign an optimal cluster label to it so as to partition the samples into clusters without a priori knowledge about the number of clusters and the initial centroids. To start with, the algorithm assigns each sample a unique cluster label, making it a singleton cluster. Subsequently, to update the cluster label, the similarity between the sample in question and the samples in a voting pool and their labels are involved. The clusters progressively form without the user specifying their initial centroids, as interaction among the samples continues. Due to its flexibility and adaptability, the proposed algorithm can be easily adjusted for on-line learning and is able to cope with the stability-plasticity dilemma.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملCo-Clustering the Documents and Words Using-IJCSEC
In this paper, we propose a novel constrained coclustering method to achieve two goals. First, we combine information theoretic coclustering and constrained clustering to improve clustering performance. Second, we adopt both supervised and unsupervised constraints to demonstrate the effectiveness of our algorithm. The unsupervised constraints are automatically derived from existing knowledge so...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کامل